Partial Least Squares Regression Based Variables Selection for Water Level Predictions

نویسندگان

  • Noraini Ibrahim
  • Antoni Wibowo
چکیده

Floods are common phenomenon in the state of Kuala Krai, specifically in Kelantan-Malaysia. Every year, floods affecting biodiversity on this region and also causing property loss of this residential area. The residents in Kelantan always suffered from floods since the water overflows to the areas adjoining to the rivers, lakes or dams. Months, average monthly rainfall, temperature, relative humidity and surface wind were used as predictors while the water level of Galas River was used as response. The selection of suitable predictor variables becomes an important issue for developing prediction model since the analysis data uses many variables from meteorological and hydrogical departments. In this study, we conduct K-fold CrossValidation (CV) to select the important variables for the water level predictions. A suitable prediction model is needed to forecast the water level in Galas River by adopting the Ordinary Linear Regression (OLR) and Partial Least Squares Regression (PLSR). However, we need to perform pre-processing data of the datasets since the original data contain missing data. We perform two types of pre-processing data which are using mean of the corresponding months (type I pre-processing data) and OLR (type II preprocessing data) of missing data. Based on the experiment, PLSR is more suitable model rather than OLR for predicting the water level in Galas River and the use of the type I pre-processing data gives higher accuracy than the type II pre-processing data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictions of Water Level in Dungun River Terengganu Using Partial Least Squares Regression

Floods are common phenomenon in the state of Dungun, specifically in Terengganu-Malaysia. Every year, floods affecting biodiversity on this region and also causing property loss of this residential area. The residents in Dungun always suffered from floods since the water overflows to the areas adjoining to the rivers, lakes or dams. The rainfall and evaporation of the area have a large influenc...

متن کامل

The influence of measurement noise on PLS-based batch-end quality prediction ?

The development of automated process monitoring systems to assist human operators in their decisions is an important challenge for today’s chemical and biochemical companies. Especially for batch processes, close monitoring is required to achieve a satisfactory product quality at the end of the batch operation. Techniques based on Partial Least Squares (PLS) were developed to obtain online pred...

متن کامل

Boiling Points Predictions Study via Dimension Reduction Methods: SIR, PCR and PLSR

Variable selection is an important tool in QSAR. In this article, we employ three known techniques: sliced inverse regression (SIR), principal components regression (PCR) and partial least squares regression (PLSR) for models to predict the boiling points of 530 saturated hydrocarbons. With 122 topological indices as input variables our results show that these three methods have good performanc...

متن کامل

Random Forests Feature Selection with Kernel Partial Least Squares: Detecting Ischemia from MagnetoCardiograms

Random Forests were introduced by Breiman for feature (variable) selection and improved predictions for decision tree models. The resulting model is often superior to Adaboost and bagging approaches. In this paper the random forest approach is extended for variable selection with other learning models, in this case partial least squares (PLS) and kernel partial least squares (K-PLS) to estimate...

متن کامل

Local Strategy Combined with a Wavelength Selection Method for Multivariate Calibration

One of the essential factors influencing the prediction accuracy of multivariate calibration models is the quality of the calibration data. A local regression strategy, together with a wavelength selection approach, is proposed to build the multivariate calibration models based on partial least squares regression. The local algorithm is applied to create a calibration set of spectra similar to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013